Residual Neural Network for the Accurate Recognition of Human Action and Compared with Bayesian Regression

نویسندگان

چکیده

Aim: In this research article, the aim is to analyze and compare performance of Residual Neural Network Bayesian Regression for accurate recognition human actions. Materials Methods: The proposed machine learning classifier model uses 80% UCF101 dataset training remaining 20% testing. For SPSS analysis, results two classifiers are grouped with 20 samples in each group. sample size determined using a pretest G-power, 80%, confidence interval 95%, significance level 0.014 (p<0.05). Result: findings suggest that novel residual neural network regression achieved accuracy rates 95.63% 93.97%, respectively, identifying activities accurately.The statistical value between networks has been calculated be p=0.014 (independent t-test p<0.05), indicating statistically significant difference classifiers.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

scour modeling piles of kambuzia industrial city bridge using hec-ras and artificial neural network

today, scouring is one of the important topics in the river and coastal engineering so that the most destruction in the bridges is occurred due to this phenomenon. whereas the bridges are assumed as the most important connecting structures in the communications roads in the country and their importance is doubled while floodwater, thus exact design and maintenance thereof is very crucial. f...

Bayesian nonparametric regression with varying residual density.

We consider the problem of robust Bayesian inference on the mean regression function allowing the residual density to change flexibly with predictors. The proposed class of models is based on a Gaussian process prior for the mean regression function and mixtures of Gaussians for the collection of residual densities indexed by predictors. Initially considering the homoscedastic case, we propose ...

متن کامل

AN IMPROVED CONTROLLED CHAOTIC NEURAL NETWORK FOR PATTERN RECOGNITION

A sigmoid function is necessary for creation a chaotic neural network (CNN). In this paper, a new function for CNN is proposed that it can increase the speed of convergence. In the proposed method, we use a novel signal for controlling chaos. Both the theory analysis and computer simulation results show that the performance of CNN can be improved remarkably by using our method. By means of this...

متن کامل

the evaluation of language related engagment and task related engagment with the purpose of investigating the effect of metatalk and task typology

abstract while task-based instruction is considered as the most effective way to learn a language in the related literature, it is oversimplified on various grounds. different variables may affect how students are engaged with not only the language but also with the task itself. the present study was conducted to investigate language and task related engagement on the basis of the task typolog...

15 صفحه اول

Bayesian Semiparametric Regression for Median Residual Life

With survival data there is often interest not only in the survival time distribution but also in the residual survival time distribution. In fact, regression models to explain residual survival time might be desired. Building upon recent work of Kottas and Gelfand (2001) we formulate a semiparametric median residual life regression model induced by a semiparametric accelerated failure time reg...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: E3S web of conferences

سال: 2023

ISSN: ['2555-0403', '2267-1242']

DOI: https://doi.org/10.1051/e3sconf/202339904024